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skin effect in rectangular conductors 
Kazimierz Jakubiuk and Pawel Zimny 
Department of Electrical Engineering, Technical University, 80-952 Gdansk, ul. 
Majakowskiego 11/12, Poland 

Received 25 July 1975, in final form 24 October 1975 

Abstract. By means of the conformal representation method the distribution of surface 
current density is found in a conductor treated as a superconductor. The current density 
distribution is determined in a rectangular conductor for an arbitrary current shape. The 
possibility of accepting a one-dimensional model has been demonstrated. 

Notation 

d 
E c 

Unit 
v s m-' 
v s rn-' 

m 

m 

m 
S 

- 
- 
rad 

Physical parameter 
vectorial magnetic potential 
magnetic flux density 
conductors shape coefficients 
conductor cross-sectional dimensions 
coefficients of a series 
complete elliptic integrals of the first and second kind 

respectively 
elliptic integrals of the fist  and second kind respec- 

tively 
steepness of current rise 
current 
dimensionless current dehsity 
reference current densit? 
current density 
surface current density 
area edge 
normal vector 
differential of length 
time 
Cartesian coordinates 
dimensionless coordinates 
complex variables 
angle 
coefficient 
Dirac's function 
electric conductivity of the conductor 
magnetic permeability of free space 
complex magnetic potential 
dimensionless time 
pulsation 
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1. Introduction 

Many authors have investigated the current density distribution in a rectangular 
conductor (Dwight 1918, Forbes and Gorman 1933, Kennelly et aZ1915, smtt 192,) 
However, they have not given a complete solution of the problem. The increased 
rectangular conductors, especially in such impulse systems as explosion of conductors, 
makes it necessary to determine the distribution of the current density in order to stud,, 
the physical phenomena that occur in such cases. If the dimensions of the conductoI 
cross section fulfil the following condition: 

(1) 2b/2h >> 1 

we will call the conductor a foil. The current density distribution in a foil h a  been 
determined by Zimny (1970). If the dimensions of the conductor do not fulfil he 
condition (1) or if the duration of the current impulse is comparable with the expression 
pooh2, then a two-dimensional conductor model is taken into consideration in deter- 
mining the current density distribution. 

In this paper the current density distribution in a rectangular conductor is deter- 
mined for a rectangular surge. Further, using Duhamel's theorem, a solution is found 
for an arbitrary forcing current and in particular for a linear rising surge and for 
harmonic current. This is done in two stages. 

In the first stage the current density distribution is determined for a rectangular 
surge. Then using this solution and Duhamel's theorem, in the second stage the current 
density distribution is determined for a current surge of any shape. This procedure 
eliminates the basic difficulty, namely, that of solving the skin effect of the surge and 
simultaneously determining the magnetic field in the inner and outer regions of the 
conductor. 

In the case of a rectangular surge of current flow through the conductor it is possible 
to ascertain that the magnetic field does not penetrate into the conductor region at he 
initial moment, to be called 0, henceforth. This is justified by the fact that arectangula 
shock may be considered as a sinusoidal excitation with a frequency a p p r o a c ~ ~ g  
infinity, and it is known that for very high frequencies the conductor behaves like a 
conductor placed in an electrostatic field (Kelvin 1890) or as a superconductor (Landau 
and Lifshitz 1960). We take advantage of this and first find the magnetic field 
distribution around the superconductor, in which direct current flows. If we know *at 
distribution we can then determine the surface current density and formulate theinitid 
conditions for a rectangular shaped surge. Then, using Maxwell's equationswe find the 
time distribution of the current density for a rectangular surge. 

2. current density distribution in superconductors 
. field 

It is a characteristic feature of a current-carrying superconductor that mapeoc 
nulling occurs in the superconducting region (Landau and Lifshitz 1960) Which m" 
the current flow in a surface layer of thickness about lod7 m. In order to simp1@ the 
problem we assume that the current flows on the surface and we introduce the 
surface current density. 

The vectorial magnetic potential on the outer side of a long rectangular suprcon- 
ductor, which carries current, satisfies the following equation: 

(2) 
V2A = 0. 
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lo acco~dmCe with the coordinate system assumed (figure 1) the vectorial magnetic 
eoa bas only an A, component which we will call A. The magnetic field nulling 

oondtion in the superconducting region requires that the normal component of the Po’ 

I‘ I 

Fwe 1. Coordinate system assumed for the conductor. 

magnetic induction vector B is neutralized on the surface of the superconductor. 
Taking the dependence B = V X A into consideration we have 

n . (V X A) = aA/as. (3) 

’Ibismeans the surface of the superconductor may be considered as an equipotential for 
thevector potential, i.e. 

A =constant Jx,yEL. (4) 
%e constant is determined from the normalizing condition 

jp ds = I. 

‘kdhibution of the surface current density follows from Ampere’s law and from the 
a t i o n  that the magnetic field is neutralized in the superconducting re@on and is 
determined by the dependence 

baditions (4)-(6) give boundary conditions for the component A of the magnetic 
Wential. 
In the me under investigation the most effective method of solving equation (2) 
conditions (4)-(6) is the conformal representation method in which the external 

‘Ron of the conductor is mapped into the region outside a unit circle; thus the 
“pleXmagnetic potential is given by 

n x (V x A ) = cLojplx, Y e k  (6)  

we introduce dimensionless coordinates 

x = X J h  

Y = Y/h. (9) 
lfwe Proceed in the Same way as Cockcroft (1928) we transform the external redon 

*the “cfangle into an external region of a unit circle in two stages. We use the 
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stase 
symmetry of the field about the x axis and make a cut along that axis; in &e hirst 
the upper half-plane v is represented on the upper half-plane with a cut-out 
A’B’C‘CBA (figure 2( a ) )  using the Christoff el-Schwarz equation 

v 2 - 1  1 / 2  du 
- = D ( y )  dv 2, - l / k  . (10) 

B A  

Figure 2. Conformal mapping: (a)  first stage; ( b )  second stage. 

Because of the symmetry of the figure A’B’C‘CBA about the y axis, the following 
relations have been assumed between various points on the U and tl planes: 

U U 

0 0 
c 1 

A CO 
B I l k  

D 
-(E(k1)-k2F(k1))= 1 k 

D 
- ( E ( k ) -  k t F ( k ) ) =  U 
k 

where 
k : = l  - k 2  

a = b/h. 

ill) 

(12) 

(13) 

In the second stage the external region of the unit circle is representedon the *wskrs upper 
half-plane o with a segment cut out, [ - l / k ,  l / k ]  (figure 2(b) ) ,  bymeansofZuk 
formula: 

(14 
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we know the complex magnetic potential, we can determine the surface 
noreat de& using 

Using 
d@ d@dwdv 
du d w d v d u  

and equations (10) and (14) we have 

ne variables x and y as functions of parameter U, which varies within the closed 
btenal[-l/k, l/k], have been determined from equation (10); namely 

r=-(E(k, sin-’ v ) -  kTF(k, sin-’ U)) 

and 

for y = 1 and v E[O, 11 (18) 
D 
k 

for x =  a and v E [l,  l l k ] .  (19) 
Equations (17)-(19) determine the surface current density in a rectangular conduc- 

tor made of a superconducting material. 

3, h e n t  density distribution in a conductor for a rectangular surge 

wfithe aid of quasistationary approximations of Maxwell’s equations, an equation for 
hdiffusion of current into the conductor region can be obtained. We start with the 
quation 

V‘j = pouaj/at. (20) 
We introduce the dimensionless variables 

r = t/p,-,ah2 

i=j /J  
ahere 
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The initial condition for equation (24), considering equation (17), is 

6( - 1 + y)+ S(1+ y) for x E [ - a, a] 
i L O +  

~ ( - - ~ + X ) + S ( U + X )  f o r y ~ [ - i , i ] .  

The solution of equation (24), with condition (2.51, gives the current densib 
distribution in a rectangular conductor for a rectangular surge in the following form: 

m + n # 0  

A formula for the coefficients in equation (27) is obtained from equations (251, (26) 
and (1 7)-( 19): 

c,, = p[ (- 1)" 
sin-'k 

cos m- E k, sin-' - sin a) - k : ~ ( / c ,  sin-' ?))I da  
0 [ zf( ( k 

+(- 1)" jd2 cos[ q ( E (  k l ,  sin -1 -) cos a 

- k 2 F ( k l ,  sin-' -))I cos CY da} 

sin-'k k, 

k l  

where 
for m + n  # 1 
f o r m + n = l .  

In figure 3 we show the distribution of dimensionless current density for time 7=OL 

and in figure 4 we show the distribution of current in time in a rectangular conductor for 
a = 1 and a = 10, calculated by computer. 
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XD-’ n I 

X X 

F i e  4. Time distributions of dimensionless current density: (a )  for a = 1; ( b )  for a = 10. 
CurveA,~=0.05;curveB,~=O.l;curveC, 7=0.5 ;curveD,~= 1.0;curveE,7= 100.0. 

1. h e n t  density distribution for a surge of arbitrary shape 

Thedistribution of dimensionless current density for arbitrarily changing current surge 
Yt)  follows from Duhamel’s theorem: 

For a linearly increasing surge, 

Z(t) = dt 

$dimensionless current density distribution is 

(30) 
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5. Conclusions 

From equations (27), (28) and (29) we can determine the distribution ofcmentde"sity 
in a rectangular conductor for an arbitrary shape of forcing current. ne that 

Y appear in the formulae converge slowly and require large numbers of terms, e s p a l  
for time values less than pouh2/r2. Thus fast computers are necessary for such 
calculations. 

me diffvsion of current into the region of a conductor with moss section different 
from a square, i.e. a # 1, proceeds in accordance with the combination of two different 
t h e  constants, namely poub2/lr2 and pouhz/r2. From equation (27), for h e  
of about 5p0uh2/r2 ,  the conductor may be considered in practice to be one dimen. 
siond, i.e. the diffusion of current takes place along the side b, as in the me of afo2, 
Thus, in this case, we can use the model proposed by Zimny (1970). 
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